VCR

A Gem used for caching HTTP requests during tests

Who am |?

Mike Dalton

Developer @ GrubHub

Using Ruby for 7 years
Frequent attendee of meetups

The problem

® Tests should be deterministic
e Result of an HTTP request might not be known

o Change in data beyond your control
o Network connectivity issues

e How do we have deterministic tests that involve 3rd party web services?

The solution

VCR Gem
https://github.com/vcr/ver

Created by Myron Marston (maintainer of RSpec)
Around since 2010
Record your test suite's HI'TP interactions and replay them during future test

runs for fast, deterministic, accurate tests.

https://github.com/vcr/vcr
https://github.com/vcr/vcr

Examples

First example

Query all issues from a GitHub repository

Create first GitHub Issue

Test Issue #1 #

kedragon opened this issue 4 hours ago - 0 comments

Test for Issue.all

require 'test_helper'
class IssueTest < ActiveSupport::TestCase

def test_all_issues
issues = Issue.all

assert_equal 1, issues.count
end
end

Implementation of Issue.all

class Issue
include ActiveModel::Model

REPOSITORY = 'https://api.github.com/repos/kcdragon/vcr-presentation’
attr_accessor :title

def self.all
uri = URl.parse("#{REPOSITORY}/issues")
response = Net::HTTP.get_response(uri)

JSON.parse(response.body).map do |issue_data|
Issue.new(
title: issue_data['title']
)
end
end
end

Result of running test

[mikedalton@ikes—MBP vcr-presentation (master)]$ rails test
Running via Spring preloader in process 50849
Run options: —seed 50218

Running:

Finished in 0.010395s, 96.2001 runs/s, 96.2001 assertions/s.

1 runs, 1 assertions, @ failures, @ errors, @ skips
[mikedalton@likes-MBP vcr—-presentation (master)]s$ ||

Create second GitHub Issue

Test Issue #2 77

kedragon opened this issue a day ago - 0 comments

Result of running test

[mikedalton@ikes-MBP vcr-presentation (master)]$ rails test

Running via Spring preloader in process 51074

Run options: ——seed 61062

Running:

F

Failure:

IssueTest#test_all_issues [/Users/mikedalton/Code/vcr-presentation/test/models/issue_test.rb:10]:

Expected: 1
Actual: 2

bin/rails test test/models/issue_test.rb:5

Finished in @0.010219s, 97.8569 runs/s, 97.8569 assertions/s.

1 runs, 1 assertions, 1 failures, @ errors, @ skips

VCR to the rescue!

require 'test_helper'
class IssueTest < ActiveSupport::TestCase

def test_all_issues
issues = VCR.use_cassette('issue/all') do
Issue.all
end

assert_equal 2, issues.count
end
end

test/test_helper.rb

VCR.configure do |config|
config.cassette_library_dir = 'test/cassettes'
config.hook_into :webmock

end

Gemfile

gem 'ver', '3.0.3'
gem 'webmock’, '3.0.1'

How does this work?

e First time test is run:

o HTTP request is performed

o VCR creates a YAML file (called a “cassette”) to store request and response
e Second time test is run:

o VCR recognizes the same request is being made
o VCR uses YAML file to return the response

Cassette file

YAML format

Contains both the HTTP request and response
Single YAML file can contain multiple requests
Each request must have a response

Single YAML file can be used in multiple tests

Cassette for Issue.all request/response

http_interactions:
- request:
method: get
uri: https://api.github.com/repos/kcdragon/vcr-presentation/issues

response:
status:
code: 200
message: OK
headers:

body:
encoding: ASCII-8BIT
string: '[{...}]'
http version:
recorded_at: Mon, 17 Apr 2017 19:08:29 GMT

recorded with: VCR 3.0.3

Second example

e C(Create an issue via the GitHub API
e Check that issue has been created

Test for Issue.create

require 'test_helper'
class IssueTest < ActiveSupport::TestCase

def test_create_issue
title = 'Issue created from API #1'
issue = Issue.new(title: title)
VCR.use_cassette('issue/create') do
Issue.create(issue) # first HTTP request

issues = Issue.all # second HTTP request
issue = issues first
assert_equal title, issue.title
end
end
end

Implementation for Issue.create

class Issue
include ActiveModel::Model

REPOSITORY = 'https://api.github.com/repos/kcdragon/vcr-presentation’
attr_accessor :title

def self.create(issue)
uri = URl.parse("#{REPOSITORY}/issues")
request = Net::HTTP::Post.new(uri)
request.body = JSON.generate(title: issue.title)
request.basic_auth("user", "token")

Net::HTTP.start(uri.hostname, uri.port, use_ssl: true) do |http|
http.request(request)
end
end
end

Result of running test

[mikedalton@ikes—MBP vcr-presentation (master)]$ rails test
Running via Spring preloader in process 50849
Run options: —seed 50218

Running:

Finished in 0.010395s, 96.2001 runs/s, 96.2001 assertions/s.

1 runs, 1 assertions, @ failures, @ errors, @ skips
[mikedalton@likes-MBP vcr—-presentation (master)]s$ ||

“Accidentally” introduce a bug

class Issue
#..

def self.create(issue)
...
request.body = JSON.generate(title: nil) # < Change “issue.fitle’ to "nil’
...
end
end

Result of running test

[mikedalton@ikes—MBP vcr-presentation (master)]$ rails test
Running via Spring preloader in process 50849
Run options: —seed 50218

Running:

Finished in 0.010395s, 96.2001 runs/s, 96.2001 assertions/s.

1 runs, 1 assertions, @ failures, @ errors, @ skips
[mikedalton@likes-MBP vcr—-presentation (master)]s$ ||

We changed the application code but the tests still pass?

e VCR default matching
o URI
o HTTP Method (GET, POST, etc)

e Need to tell VCR how to match

Test for Issue.create

require 'test_helper'
class IssueTest < ActiveSupport::TestCase

def test_create_issue
#..
VCR.use_cassette('issue/create’, match_requests_on: %i(uri method body)) do
#..
end
end
end

Result of running tes

[[mikedalton@ikes-MBP vcr-presentation (master)]$ rails test
Running via Spring preloader in process 50566
Run options: —seed 57883

:mmw Error:
— IssueTest#test_create_issue:
VCR::Errors::UnhandledHTTPRequestError:

IssueTest#test_create_issue:
VCR: :Errors: :UnhandledHTTPRequestError:

An HTTP request has been made that VCR does not know how to handle:

POST https://api.github. con/repos/kcdragon/vr-presentation/ issues

e An HTTP request has been made that VCR does not know how to handle:

=Y e i R e) POST https://api.github.com/repos/kcdragon/vcr-presentation/issues
Body: {"title":null}

- :match_requests_on => [:uri, :method, :bodyl

Under the current configuration VCR can not find a suitable HTTP interaction

to replay and is prevented from recording new requests. There are a few ways
VCR is currently using the following cassette:
- /Users/mikedalton/Code/vcr-presentation/test/cassettes/issue/create.yml

you can deal with this:

% If you're surprised VCR is raising this error
and want insight about how VCR attempted to handle the request,
you can use the debug_logger configuration option to log more details [1].

* You can use the :new_episodes record mode to allow VCR to srecord => :once
record this new request to the existing cassette [2].

* If you want VCR to ignore this request (and others Llike it), you can mat C h request S on => [ur
set an “ignore_request' callback [3]. — —_

* The current record mode (:once) does not allow new requests to be recorded
0 a previously recorded cassette. You can delete the cassette file and re-run
your tests to allow the cassette to be recorded with this request [4].

* The cassette contains 2 HTTP interactions that have not been
played back. If your request is non-deterministic, you may need to
change your :match_requests_on cassette option to be more lenient
or use a custom request matcher to allow it to match [5].

:method, :body]

3/docs/configuration/debug-logging
3/docs/ record-modes/new-episodes
3/docs/configuration/ignore-request
3/docs/ record-modes/once
3/docs/request-matching

[1] https://www. relishapp.com/vcr/ver/v/3-
[2] https://www. relishapp. com/ver/ver/v/3-
[3] https://www. relishapp. com/vcr/ver/v/3-4
[4] https://wew. relishapp. com/ver/ver/v/3-
[5] https://www.relishapp.com/vcr/ver/v/3

app/models/issue. rb:26:in “block in create’

app/models/issue. rb:25:in “create’
test/models/issue_test.rb:20:in “block in test_create_issue'

test/models/issue_test.rb:19:in ‘test_create_issue'

bin/rails test test/models/issue_test.rb:16

Finished in 0.015907s, 125.7308 runs/s, 125.7308 assertions/s.

2 runs, 2 assertions, @ failures, 1 errors, @ skips

Third example

Query GitHub for important bugs

Create an important bug issue in GitHub

Important Bug #+

kedragon opened this issue just now - 0 comments

,E(§% kcdragon commented just now

No description provided.

© @ kcdragon added the [label just now

© @ kedragon added the important label just now

Assignees

No one—assign yourself

important

Projects

Test for Issue.important_bugs

require 'test_helper'
class IssueTest < ActiveSupport::TestCase

def test_important_bug_issues
issues = VCR.use_cassette('issue/important_bugs') do
Issue.important_bugs
end

assert_equal 1, issues.count
end
end

Implementation for Issue.important_bugs

class Issue
..

def self.important_bugs
uri = URl.parse("#{REPOSITORY}/issues?labels=bug,important")
response = Net::HTTP.get_response(uri)

JSON.parse(response.body).map do |issue_data|
Issue.new(
title: issue_data'title']
)
end
end
end

Result of running test

[mikedalton@ikes—MBP vcr-presentation (master)]$ rails test
Running via Spring preloader in process 50849
Run options: —seed 50218

Running:

Finished in 0.010395s, 96.2001 runs/s, 96.2001 assertions/s.

1 runs, 1 assertions, @ failures, @ errors, @ skips
[mikedalton@likes-MBP vcr—-presentation (master)]s$ ||

“Refactor” some code

class Issue
..

def self.important_bugs
uri = URl.parse("#{REPOSITORY}/issues?labels=important,bug") # < Change “bug,important” to “important,bug”
#..
end
end

[mikedalton@Mikes-MBP vcr-presentation (master)]$ rails test
Running via Spring preloader in process 57939
Run options: --seed 63456

Running:

Error:
. IssueTest#test_important_bug_issues:
ﬁsuegigcest,jmportanu:ug,lssues VCR::Errors::UnhandledHTTPRequestError

:UnhandledHTTPRequestError:

E

An HTTP request has been made that VCR does not know how to handle
GET https://api.github.com/repos/kcdragon/vcr-presentation/issues?labels=important, bug

An HTTP request has been made that VCR does not know how to handle:

VCR is currently using the following cassette:

- JUsers/nikedalton/Code/ver-presentation/ test/cassettes/ issue/ inportant_bugs.ynl GET https://api.github.com/repos/kcdragon/vcr-presentation/issues?labels=important,bug

record => :once

match_requests_on => [:method, :uril
Under the current configuration VCR can not find a suitable HTTP interaction VCR is current -l.y using the fol I.OWlng cassette:
to replay and is prevented from recording new requests. There are a few ways

you'can deal with this: /Users/mikedalton/Code/vcr-presentation/test/cassettes/issue/important_bugs.yml
If you're surprised VCR is raising this error - :record => :once

and want insight about how VCR attempted to handle the request, 5
you can use the debug_logger configuration option to log more details [1]. : mat Ch requests on > [- method) s u r]_]
You can use the :new_episodes record mode to allow VCR to f =

record this new request to the existing cassette [2].

If you want VCR to ignore this request (and others like it), you can

set an “ignore_request® callback [3].
k The current record mode (:once) does not allow new requests to be recorded

to a previously recorded cassette. You can delete the cassette file and re-run

your tests to allow the cassette to be recorded with this request [4].
« The cassette contains 1 HTTP interaction that has not been

played back. If your request is non-deterministic, you may need to

change your :match_requests_on cassette option to be more lenient

or use a custom request matcher to allow it to match [5].

https://www. relishapp.com/vcr/ver/v/3-8-3/docs/configuration/debug-logging
https://www. relishapp. com/vcr/ver/v/3-8-3/docs/ record-modes/new-episodes
https://www. relishapp.com/vcr/ver/v/3-0-3/docs/configuration/ignore-request
https://www. relishapp. com/vcr/ver/v/3-8-3/docs/ record-modes/once
https://www. relishapp. com/vcr/ver/v/3-8-3/docs/ request-matching

app/models/issue.rb:44:in "important_bugs'
test/models/issue_test.rb:39:in “block in test_important_bug_issues'
test/models/issue_test.rb:38:in “test_important_bug_issues"

bin/rails test test/models/issue_test.rb:37

Finished in 0.02589@s, 154.4998 runs/s, 154.4998 assertions/s.

4 runs, 4 assertions, @ failures, 1 errors, 0 skips

Two solutions

e Delete the existing cassette and generate a new cassette
o May require changing the test

e Use a “custom matcher” to accept any ordering of labels

o There is no built-in matcher for our specific need

Custom matcher for “labels=bug,important” in query string

VCR.configure do |config|
#..

config.register_request_matcher :label_in_query_string do |request_1, request_2|
extract labels=bug,important from query string
labels_in_query_string = ->(request) do
query_string = URI.parse(request.uri).query
query_string.split('&').reduce({}) do |[memo, pair|
key, value = pair.split('=")
memo.merge(key => value)
end['labels’|
end

labels_1 = labels_in_query_string.(request_1)
labels_2 = labels_in_query_string.(request_2)

labels_1.split(',').sort == labels_2.split(",").sort
end
end

Test for Issue.important_bugs

require 'test_helper'
class IssueTest < ActiveSupport::TestCase

def test_important_bug_issues
issues = VCR.use_cassette('issue/important_bugs', match_requests_on: %i(path label_in_query_string)) do

Result of running test

[mikedalton@ikes—MBP vcr-presentation (master)]$ rails test
Running via Spring preloader in process 50849
Run options: —seed 50218

Running:

Finished in 0.010395s, 96.2001 runs/s, 96.2001 assertions/s.

1 runs, 1 assertions, @ failures, @ errors, @ skips
[mikedalton@likes-MBP vcr—-presentation (master)]s$ ||

Summary

e First example
o GET requests

e Second example
o POST requests
© 'match_requests_on’
m Defaults: URI, method
e Third example

o Delete cassette file to regenerate
o Custom matchers

Thanks!

