
Mike Dalton

Introduction to Hotwire Native
Build iOS and Android apps with Ruby on Rails

• Based in Philadelphia

• Attended my first NYC.rb in
October 2024

• Lead Engineer at Triumph

• Full Stack Ruby on Rails
developer

• Using Hotwire Native on my side
project

https://calendarvision.app/

Who am I?

https://triumph.io/
https://calendarvision.app/
https://calendarvision.app/
https://calendarvision.app/
https://calendarvision.app/

Hotwire

Hotwire

• Created by 37signals

• Default front end “framework” in Rails 7+

https://hotwired.dev/

“Hotwire is an alternative approach to building modern
web applications without using much JavaScript by
sending HTML instead of JSON over the wire.”

Hotwire
Turbo

• Requires JavaScript but…

• No need to write your own JavaScript

• Behavior triggered by server-side responses

Hotwire
Turbo Drive

• Turbolinks successor

• Works “out of the box”

• Performs all requests in JS to prevent page reload

Turbo Frames

• Only update parts of a page

• Links or form submissions

https://turbo.hotwired.dev/handbook/frames

Hotwire

Turbo Streams

• Modify any part of the page

• More control, more code, more
complexity

https://turbo.hotwired.dev/handbook/streams

Hotwire

Hotwire
Stimulus

• Write custom JavaScript

• Like jQuery but more structured

Hotwire
Stimulus

Hotwire
Native

• More to come…

Mobile in 2025

So many choices

Mobile in 2025
Native

Android (Kotlin) iOS (Swift)

Mobile in 2025
Crossplatform

Kotlin

Kotlin Multiplatform

Dart

Flutter

React

React Native

Angular, React or Vue

Ionic

C#

.NET MAUI

Swift

Swift for Android

Mobile in 2025
Crossplatform

Hotwire Native

Hotwire Native

Hotwire Native
History

• Created by 37signals

• Turbo Native released in 2020

• Strada released in 2023

• Rebranded as Hotwire Native in 2024

Hotwire Native
Who should use it

• You have the need for a web app, iOS and Android app

• You want to build with Hotwire and Turbo

• You’re comfortable being an early adopter

Hotwire Native
How does it work

• Embedded web browser

• Doesn’t look like a browser

• iOS uses WKWebView

• Android uses WebView

https://developer.apple.com/documentation/webkit/wkwebview
https://developer.android.com/reference/android/webkit/WebView

Project Setup

Project Setup

• No generator (like rails new)

• Hotwire Native apps are Native apps

Project Setup
iOS

1. Use the Xcode New Project Wizard

2. Add hotwire-native-ios package dependency

3. Replace SceneDelegate.swift with…

import HotwireNative
import UIKit

let rootURL = URL(string: "https://hotwire-native-demo.dev")!

class SceneDelegate: UIResponder, UIWindowSceneDelegate {
 var window: UIWindow?

 private let navigator = Navigator(configuration: .init(
 name: "main",
 startLocation: rootURL
))

 func scene(_ scene: UIScene, willConnectTo session: UISceneSession, options connectionOptions: UIScene.ConnectionOptions) {
 window?.rootViewController = navigator.rootViewController
 navigator.start()
 }
}

SceneDelegate.swift

Project Setup
Android

1. Use the Android Studio New Project Wizard

2. Add hotwire-native-android dependencies to Gradle build files

3. Enable internet access in AndroidManifest.xml

4. Replace MainActivity.kt with…

5. Replace activity_main.xml with…

package com.example.myapplication

import android.os.Bundle
import android.view.View
import androidx.activity.enableEdgeToEdge
import dev.hotwire.navigation.activities.HotwireActivity
import dev.hotwire.navigation.navigator.NavigatorConfiguration
import dev.hotwire.navigation.util.applyDefaultImeWindowInsets

class MainActivity : HotwireActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 enableEdgeToEdge()
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 findViewById<View>(R.id.main_nav_host).applyDefaultImeWindowInsets()
 }

 override fun navigatorConfigurations() = listOf(
 NavigatorConfiguration(
 name = "main",
 startLocation = "https://hotwire-native-demo.dev",
 navigatorHostId = R.id.main_nav_host
)
)
}

MainActivity.kt

<?xml version="1.0" encoding="utf-8"?>
<androidx.fragment.app.FragmentContainerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/main_nav_host"
 android:name="dev.hotwire.navigation.navigator.NavigatorHost"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:defaultNavHost="false" />

activity_main.xml

Screen Navigation

Screen Navigation
Push and Pop

Screen Navigation
Replace

Screen Navigation
External Links

Path Configuration

Basic Navigation
Path Configuration

{
 "rules": [
 {
 "patterns": [
 ".*"
],
 "properties": {
 "context": "default",
 "pull_to_refresh_enabled": true
 }
 }
]
}

Modal Navigation
Path Configuration

{
 "rules": [
 {
 "patterns": [
 "/new$",
 "/edit$"
],
 "properties": {
 "context": "modal",
 "pull_to_refresh_enabled": false
 }
 }
]
}

Native Screens
Path Configuration

{
 "rules": [
 {
 "patterns": [
 "/numbers$"
],
 "properties": {
 “view_controller": “numbers”
 }
 }
]
}

Navigation Bar Title

Navigation Bar Title

Before After

Navigation Bar Title
Implementation steps

Add page-specific title tag in Rails code base

Hide h1 tag in Rails code base

Navigation Bar Title
Add title tag

<%= content_for :title, "Your Feeds" %>

<div class="max-w-4xl mx-auto p-6 space-y-6">
 <div class="flex justify-between items-center">
 <h1 class="text-2xl font-bold">Your Feeds</h1>
 <%= link_to "Add Feed", new_feed_path, class: “btn-primary" %>
 </div>

 ...
</div>

index.html.erb

Navigation Bar Title
Implementation steps

Add page-specific title tag in Rails code base

Hide h1 tag in Rails code base

Navigation Bar Title
Add hotwire-native CSS variant

<!DOCTYPE html>
<%= tag.html(
 data: {
 hotwire_native: hotwire_native_app?,
 },
) do %>
 <head>
 <title><%= content_for(:title) || "RSS Reader" %></title>
 ...
<% end %>

application.html.erb

@variant hotwire-native {
 html[data-hotwire-native="true"] & {
 @slot
 }
}

application.css

Navigation Bar Title
Hide h1 on Hotwire Native apps

<%= content_for :title, "Your Feeds" %>

<div class="max-w-4xl mx-auto p-6 space-y-6">
 <div class="flex justify-between items-center">
 <h1 class="hotwire-native:hidden text-2xl font-bold">Your Feeds</h1>
 <%= link_to "Add Feed", new_feed_path, class: “btn-primary" %>
 </div>

 ...
</div>

index.html.erb

Native Tab Bar

• Built in to Hotwire Native

• Each tab is a…

• separate web view

• separate navigation stack

Native Tab Bar

Native Tab Bar
Implementation steps

Add native tab bar to iOS code base

Add native tab bar to Android code base

Hide web-based navigation in Rails code base

Native Tab Bar
iOS

let baseUrl = URL(string: "http://localhost:3000")!

extension HotwireTab {
 static let all: [HotwireTab] = {
 var tabs: [HotwireTab] = [
 .feeds,
 ...
]

 return tabs
 }()

 static let feeds = HotwireTab(
 title: "Feeds",
 image: .init(systemName: "tray")!,
 url: baseUrl.appending(path: "/feeds")
)

 …
}

Tabs.swift

iOS
Native Tab Bar

class SceneController: UIResponder {
 ...

 private lazy var tabBarController = HotwireTabBarController(navigatorDelegate: self)
}

extension SceneController: UIWindowSceneDelegate {
 func scene(_ scene: UIScene, willConnectTo session: UISceneSession,
 options connectionOptions: UIScene.ConnectionOptions) {
 ...

 tabBarController.load(HotwireTab.all)
 }
}

SceneController.swift

Native Tab Bar
Implementation steps

Add native tab bar to iOS code base

Add native tab bar to Android code base

Hide web-based navigation in Rails code base

Native Tab Bar
Android

Native Tab Bar
Android

private val feeds = HotwireBottomTab(
 title = "Feeds",
 iconResId = R.drawable.inbox_24px,
 configuration = NavigatorConfiguration(
 name = "feeds",
 navigatorHostId = R.id.feeds_nav_host,
 startLocation = "$baseUrl/feeds"
)
)

...

val mainTabs = listOf(
 feeds,
 ...
)

Tabs.kt

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 ...>

 <androidx.fragment.app.FragmentContainerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/feeds_nav_host"
 android:name="dev.hotwire.navigation.navigator.NavigatorHost"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 app:defaultNavHost="false"
 app:layout_constraintBottom_toTopOf="@id/bottom_nav"
 app:layout_constraintTop_toTopOf="parent" />

 ...

 <com.google.android.material.bottomnavigation.BottomNavigationView
 android:id="@+id/bottom_nav"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:labelVisibilityMode="labeled"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

Native Tab Bar
Android

activity_main.xml

Native Tab Bar
Android

MainActivity.kt

class MainActivity : HotwireActivity() {
 private lateinit var bottomNavigationController: HotwireBottomNavigationController

 override fun onCreate(savedInstanceState: Bundle?) {
 ...

 initializeBottomTabs()
 }

 private fun initializeBottomTabs() {
 val bottomNavigationView = findViewById<BottomNavigationView>(R.id.bottom_nav)
 bottomNavigationController = HotwireBottomNavigationController(this, bottomNavigationView)
 bottomNavigationController.load(mainTabs, 0)
 }
}

Native Tab Bar
Implementation steps

Add native tab bar to iOS code base

Add native tab bar to Android code base

Hide web-based navigation in Rails code base

Native Tab Bar
Hide Web Navigation

 <body>
 ...

 <main>
 <% if authenticated? %>
 <header class="hotwire-native:hidden flex ...”>
 <button...>
 </button>
 </header>
 <% end %>

 <%= yield %>
 </main>

 ...
 </body>

Before After

Bridge Components

Bridge Components

• Formerly called Strada

• Three parts

• Stimulus controller

• iOS component

• Android fragment

Bridge
Components
Navigation Bar Button

Before After

Bridge Components
Navigation Bar Button

Add Stimulus controller

Update the link_to helper to use the Stimulus controller

Add iOS component

Add Android component

Bridge
Components
Navigation Bar Button

import { BridgeComponent } from "@hotwired/hotwire-native-bridge"

export default class extends BridgeComponent {
 static component = "button"

 connect() {
 super.connect()

 const element = this.bridgeElement
 const title = element.bridgeAttribute("title")
 this.send("connect", {title}, () => {
 this.element.click()
 })
 }
}

app/javascript/controllers/bridge/button_controller.js

Bridge
Components
Navigation Bar Button

app/views/feeds/index.html.erb

 <%= link_to "Add Feed", new_feed_path,
 class: "hotwire-native:hidden btn-primary",
 data: {
 controller: "bridge--button",
 bridge_title: "Add Feed",
 } %>

import HotwireNative
import UIKit

final class ButtonComponent: BridgeComponent {
 override class var name: String { "button" }

 override func onReceive(message: Message) {
 guard let viewController else { return }
 addButton(via: message, to: viewController)
 }

 private var viewController: UIViewController? {
 delegate?.destination as? UIViewController
 }

 private func addButton(via message: Message, to viewController: UIViewController) {
 guard let data: MessageData = message.data() else { return }

 let action = UIAction { [unowned self] _ in
 self.reply(to: "connect")
 }
 let item = UIBarButtonItem(title: data.title, primaryAction: action)
 viewController.navigationItem.rightBarButtonItem = item
 }
}

private extension ButtonComponent {
 struct MessageData: Decodable {
 let title: String
 }
}

Bridge
Components
Navigation Bar Button

ButtonComponent.swift

Bridge
Components
Navigation Bar Button

AppDelegate.swift

import HotwireNative
import UIKit

@main
class AppDelegate: UIResponder, UIApplicationDelegate {
 func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions: [UIApplication.LaunchOptionsKey: Any]?) -> Bool {
 Hotwire.registerBridgeComponents([
 ButtonComponent.self
])
 return true
 }
}

class ButtonComponent(
 name: String,
 private val delegate: BridgeDelegate<HotwireDestination>
) : BridgeComponent<HotwireDestination>(name, delegate) {

 override fun onReceive(message: Message) {
 // Handle incoming messages based on the message `event`.
 when (message.event) {
 "connect" -> handleConnectEvent(message)
 else -> Log.w("ButtonComponent", "Unknown event for message: $message")
 }
 }

 private fun handleConnectEvent(message: Message) {
 val data = message.data<MessageData>() ?: return

 // Write native code to display a native submit button in the
 // toolbar displayed in the delegate.destination. Use the
 // incoming data.title to set the button title.
 }

 private fun performButtonClick(): Boolean {
 return replyTo("connect")
 }

 // Use kotlinx.serialization annotations to define a serializable
 // data class that represents the incoming message.data json.
 @Serializable
 data class MessageData(
 @SerialName("title") val title: String
)
}

Bridge
Components
Navigation Bar Button

ButtonComponent.kt

Bridge
Components
Navigation Bar Button

Hotwire.registerBridgeComponents(
 BridgeComponentFactory("button", ::ButtonComponent)
)

Bridge
Components
Navigation Bar Button

Bridge
Components
Navigation Bar Menu

Before

After

Bridge
Components
Toast Messages

Before After

Bridge
Components
Request Permissions

https://masilotti.com/bridge-components/

Bridge
Components
Joe Masilotti’s library

Supporting OAuth

• Sign in with Apple

• Sign in with Google

• Sign in with …

Supporting OAuth

Supporting
OAuth
Web

Supporting
OAuth
Native (Web view)

https://developers.googleblog.com/upcoming-security-changes-to-googles-oauth-20-authorization-endpoint-in-embedded-webviews/

https://developers.googleblog.com/upcoming-security-changes-to-googles-oauth-20-authorization-endpoint-in-embedded-webviews/

…[Google] introduced a new secure browser
policy prohibiting Google OAuth requests in embedded
browser libraries commonly referred to as embedded
webviews. All embedded webviews will be blocked…

Supporting
OAuth
Native (External)

Create Stimulus part of Bridge Component

Update “Sign in with …” button to use Bridge component

Create view in Rails to initiate OAuth process

Create iOS Bridge Component

import { BridgeComponent } from "@hotwired/hotwire-native-bridge"

export default class extends BridgeComponent {
 static component = "sign-in-with-oauth"
 static values = {
 startPath: String
 }

 interceptSubmit(event) {
 event.preventDefault()

 const startPath = this.startPathValue
 this.send("click", { startPath })
 }
}

app/javascript/controllers/bridge/sign_in_with_oauth_controller.js

<%= form_with(
 url: apple_oauth_sessions_path,
 method: :post,
 data: {
 controller: "bridge--sign-in-with-oauth",
 action: "submit->bridge--sign-in-with-oauth#interceptSubmit",
 bridge__sign_in_with_oauth_start_path_value: new_apple_oauth_sessions_path
 }) do |form| %>
 <%= form.submit "Sign in with Apple", class: "btn-outline w-full" %>
<% end %>

app/views/shared/_sign_in_with_apple.html.erb

Create Stimulus part of Bridge Component

Update “Sign in with …” button to use Bridge component

Create view in Rails to initiate OAuth process

Create iOS Bridge Component

<%= form_with(
 url: apple_oauth_sessions_path,
 method: :post,
 data: {
 controller: “form-submit",
 turbo: false
 }) do |form| %>
 <%= form.hidden_field :platform, value: params[:platform] %>
<% end %>

app/views/apple_oauth_sessions/new.html.erb

import { Controller } from "@hotwired/stimulus"

export default class extends Controller {
 connect() {
 this.element.requestSubmit()
 }
}

app/javascript/controllers/form_submit_controller.js

class AppleOauthSessionsController < ApplicationController
 skip_before_action :verify_authenticity_token
 allow_unauthenticated_access

 def new
 render :new, layout: false
 end

 ...
end

app/controllers/apple_oauth_sessions_controller.rb

Create Stimulus part of Bridge Component

Update “Sign in with …” button to use Bridge component

Create view in Rails to initiate OAuth process

Create iOS Bridge Component

class SignInWithOauthComponent: BridgeComponent {
 ...

 private var safariViewController: SFSafariViewController?

 override func onReceive(message: Message) {
 guard let event = Event(rawValue: message.event) else { return }

 switch event {
 case .click:
 onClick(message: message)
 }
 }

 private func onClick(message: Message) {
 guard let data: MessageData = message.data(),
 let startUrl = URL(string: "\(baseUrl)\(data.startPath)") else { return }

 launchSafariViewController(with: startUrl)
 }

 private func launchSafariViewController(with url: URL) {
 let safariVC = SFSafariViewController(url: url)
 safariVC.modalPresentationStyle = .pageSheet
 self.safariViewController = safariVC

 viewController.present(safariVC, animated: true)
 }
}

private extension SignInWithOauthComponent {
 enum Event: String {
 case click
 }

 struct MessageData: Decodable {
 let startPath: String
 }
}

SignInWithOauthComponent.swift

@main
class AppDelegate: UIResponder, UIApplicationDelegate {
 func application(
 ...
) -> Bool {
 ...

 Hotwire.registerBridgeComponents([
 SignInWithOauthComponent.self,
])

 ...
 }
}

AppDelegate.swift

class AppleOauthSessionsController < ApplicationController
 ...

 def callback
 user_info = authenticate_with_apple
 user = create_user(user_info)
 unless user.persisted?
 redirect_to new_session_path, alert: "Unable to sign in. Please try again."
 return
 end

 token = user.signed_id(purpose: :native_auth, expires_in: 5.minutes)
 redirect_to "rssreader://auth-callback?token=#{token}&platform=#{platform}", allow_other_host: true
 end
end

app/controllers/apple_oauth_sessions_controller.rb

Update Bridge Component so it passes the token authentication path

Add the token authentication endpoint to Rails

Implement OAuth callback in iOS app

<%= form_with(
 url: apple_oauth_sessions_path,
 method: :post,
 data: {
 controller: "bridge--sign-in-with-oauth",
 action: "submit->bridge--sign-in-with-oauth#interceptSubmit",
 bridge__sign_in_with_oauth_start_path_value: new_apple_oauth_sessions_path(platform: "native"),
 bridge__sign_in_with_oauth_token_auth_path_value: authenticate_by_token_apple_oauth_sessions_path
 }) do |form| %>
 <%= form.submit "Sign in with Apple", class: "btn-outline w-full" %>
<% end %>

app/views/apple_oauth_sessions/new.html.erb

import { BridgeComponent } from "@hotwired/hotwire-native-bridge"

export default class extends BridgeComponent {
 static component = "sign-in-with-oauth"
 static values = {
 startPath: String,
 tokenAuthPath: String,
 }

 interceptSubmit(event) {
 event.preventDefault()

 const startPath = this.startPathValue
 const tokenAuthPath = this.tokenAuthPathValue
 this.send("click", { startPath, tokenAuthPath })
 }
}

app/javascript/controllers/bridge/sign_in_with_oauth_controller.js

class SignInWithOauthComponent: BridgeComponent {
...

 private var tokenAuthPath: String?

 override func onReceive(message: Message) {
 guard let event = Event(rawValue: message.event) else { return }

 switch event {
 case .click:
 onClick(message: message)
 }
 }

 private func onClick(message: Message) {
 ...

 self.tokenAuthPath = data.tokenAuthPath

 launchSafariViewController(with: startUrl)
 }

 ...
}

private extension SignInWithOauthComponent {
 enum Event: String {
 case click
 }

 struct MessageData: Decodable {
 let startPath: String
 let tokenAuthPath: String
 }
}

SignInWithOauthComponent.swift

Update Bridge Component so it passes the token authentication path

Add the token authentication endpoint to Rails

Implement OAuth callback in iOS app

class AppleOauthSessionsController < ApplicationController
 ...

 def authenticate_by_token
 user = User.find_signed(params[:token], purpose: :native_auth)
 if user
 sign_in_and_redirect_user(user)
 else
 redirect_to welcome_path, alert: "Unable to sign in. Please try again."
 end
 end
end

app/controllers/apple_oauth_sessions_controller.rb

Update Bridge Component so it passes the token authentication path

Add the token authentication endpoint to Rails

Implement OAuth callback in iOS app

class SignInWithOauthComponent: BridgeComponent {
 ...

 private func launchSafariViewController(with url: URL) {
 ...

 NotificationCenter.default.addObserver(
 self,
 selector: #selector(handleAuthCompletion),
 name: .signInWithOauthCompleted,
 object: nil
)
 }

 @objc private func handleAuthCompletion(_ notification: Notification) {
 NotificationCenter.default.removeObserver(self, name: .signInWithOauthCompleted, object: nil)

 let token = notification.userInfo?["token"] as? String

 safariViewController?.dismiss(animated: true) { [weak self] in
 self?.safariViewController = nil
 self?.authenticateWithToken(token)
 }
 }

 private func authenticateWithToken(_ token: String?) {
 guard let webViewController = delegate?.destination as? HotwireWebViewController,
 let webView = webViewController.visitableView.webView else { return }

 if let token = token, let tokenAuthPath = tokenAuthPath {
 guard let tokenLoginUrl = URL(string: "\(baseUrl)\(tokenAuthPath)") else { return }

 var components = URLComponents(url: tokenLoginUrl, resolvingAgainstBaseURL: false)
 components?.queryItems = [URLQueryItem(name: "token", value: token)]

 if let url = components?.url {
 webView.load(URLRequest(url: url))
 }
 } else {
 webView.reload()
 }
 }
}

...

extension Notification.Name {
 static let signInWithOauthCompleted = Notification.Name("signInWithOauthCompleted")
}

SignInWithOauthComponent.swift

extension SceneController: UIWindowSceneDelegate {
 func scene(
 ...
) {
 ...

 if let urlContext = connectionOptions.urlContexts.first {
 handleIncomingURL(urlContext.url)
 }
 }

 func scene(_ scene: UIScene, openURLContexts URLContexts: Set<UIOpenURLContext>) {
 guard let url = URLContexts.first?.url else { return }
 handleIncomingURL(url)
 }

 private func handleIncomingURL(_ url: URL) {
 guard let host = url.host else { return }

 switch host {
 case "auth-callback":
 let components = URLComponents(url: url, resolvingAgainstBaseURL: false)
 let token = components?.queryItems?.first(where: { $0.name == "token" })?.value

 NotificationCenter.default.post(
 name: .signInWithOauthCompleted,
 object: nil,
 userInfo: token != nil ? ["token": token!] : nil
)
 default:
 ...
 }
 }
}

SceneController.swift

Summary

• Screen Navigation

• Path Configuration

• Navigation Bar Title

• Native Tab Bar

• Bridge Components

• OAuth

• Hotwire Native Handbook by 37signals

• Hotwire Native for Rails Developers book
by Joe Masilotti

• Learn Hotwire course by Chris Oliver and
William Kennedy

Resources

https://native.hotwired.dev/overview/how-it-works
https://masilotti.com/hotwire-native-for-rails-developers/
https://learnhotwire.com/

Thanks!

Questions?

